59 the triad control **6008** display may be conducted as described in conjunction with FIGS. **61A** through **61**C. Thereinafter, the unified desktop system may determine if an event is conducted within the triad control bar 6008. An event may be a selection of a user selectable icon within 5 region 6012 or some other icon presented within the triad control 6008. If no action is conducted, the triad control 6008 may continue to be displayed on user interface device 1308, in step 7028. If an event does occur within the triad control 6008, such as the selection of the one of the users selectable icons in 10 area 6012, the selected function may be provided in step 7020. The function provided may be the display of a window as described in conjunction with FIG. 62 through 69. The menus provided may include further functionality that may be 15 accessed through the triad control 6008. The unified desktop must then determine if a UA device is still in the triad control 6008 or in one of the menus provided from the triad control 6008, in step 7024. If the user interface device remains within the triad control area 6008, the triad control 6008 may continue to be displaced, in step 7028. However, if the user interface device is no longer within the triad control area 6008, the triad control area 6008, the triad control 6008 may be hidden, in step 7032. If a functionality provided within the menu is selected by a user, for example, selecting a user selectable icon within a menu presented in FIGS. 62 through 69, the triad control may be hidden and the function provided. While the exemplary aspects, embodiments, and/or configurations illustrated herein show the various components of the system collocated, certain components of the system can 30 be located remotely, at distant portions of a distributed network, such as a LAN and/or the Internet, or within a dedicated system. Thus, it should be appreciated, that the components of the system can be combined in to one or more devices, such as a tablet-like device, or collocated on a particular node of a 35 distributed network, such as an analog and/or digital telecommunications network, a packet-switch network, or a circuitswitched network. It will be appreciated from the preceding description, and for reasons of computational efficiency, that the components of the system can be arranged at any location 40 within a distributed network of components without affecting the operation of the system. For example, the various components can be located in a switch such as a PBX and media server, gateway, in one or more communications devices, at one or more users' premises, or some combination thereof. 45 Similarly, one or more functional portions of the system could be distributed between a telecommunications device(s) and an associated computing device. Furthermore, it should be appreciated that the various links connecting the elements can be wired or wireless links, or any 50 combination thereof, or any other known or later developed element(s) that is capable of supplying and/or communicating data to and from the connected elements. These wired or wireless links can also be secure links and may be capable of communicating encrypted information. Transmission media 55 used as links, for example, can be any suitable carrier for electrical signals, including coaxial cables, copper wire and fiber optics, and may take the form of acoustic or light waves, such as those generated during radio-wave and infra-red data communications. Also, while the flowcharts have been discussed and illustrated in relation to a particular sequence of events, it should be appreciated that changes, additions, and omissions to this sequence can occur without materially affecting the operation of the disclosed embodiments, configuration, and aspects. In yet another embodiment, the systems and methods of this disclosure can be implemented in conjunction with a 60 special purpose computer, a programmed microprocessor or microcontroller and peripheral integrated circuit element(s), an ASIC or other integrated circuit, a digital signal processor, a hard-wired electronic or logic circuit such as discrete element circuit, a programmable logic device or gate array such as PLD, PLA, FPGA, PAL, special purpose computer, any comparable means, or the like. In general, any device(s) or means capable of implementing the methodology illustrated herein can be used to implement the various aspects of this disclosure. Exemplary hardware that can be used for the disclosed embodiments, configurations and aspects includes computers, handheld devices, telephones (e.g., cellular, Internet enabled, digital, analog, hybrids, and others), and other hardware known in the art. Some of these devices include processors (e.g., a single or multiple microprocessors), memory, nonvolatile storage, input devices, and output devices. Furthermore, alternative software implementations including, but not limited to, distributed processing or component/object distributed processing, parallel processing, or virtual machine processing can also be constructed to implement the methods described herein. In yet another embodiment, the disclosed methods may be readily implemented in conjunction with software using object or object-oriented software development environments that provide portable source code that can be used on a variety of computer or workstation platforms. Alternatively, the disclosed system may be implemented partially or fully in hardware using standard logic circuits or VLSI design. Whether software or hardware is used to implement the systems in accordance with this disclosure is dependent on the speed and/or efficiency requirements of the system, the particular function, and the particular software or hardware systems or microprocessor or microcomputer systems being utilized In yet another embodiment, the disclosed methods may be partially implemented in software that can be stored on a storage medium, executed on programmed general-purpose computer with the cooperation of a controller and memory, a special purpose computer, a microprocessor, or the like. In these instances, the systems and methods of this disclosure can be implemented as program embedded on personal computer such as an applet, JAVA® or CGI script, as a resource residing on a server or computer workstation, as a routine embedded in a dedicated measurement system, system component, or the like. The system can also be implemented by physically incorporating the system and/or method into a software and/or hardware system. Although the present disclosure describes components and functions implemented in the aspects, embodiments, and/or configurations with reference to particular standards and protocols, the aspects, embodiments, and/or configurations are not limited to such standards and protocols. Other similar standards and protocols not mentioned herein are in existence and are considered to be included in the present disclosure. Moreover, the standards and protocols mentioned herein and other similar standards and protocols not mentioned herein are periodically superseded by faster or more effective equivalents having essentially the same functions. Such replacement standards and protocols having the same functions are considered equivalents included in the present disclosure. The present disclosure, in various aspects, embodiments, and/or configurations, includes components, methods, processes, systems and/or apparatus substantially as depicted and described herein, including various aspects, embodiments, configurations embodiments, subcombinations, and/or subsets thereof. Those of skill in the art will understand